Comparative effects of methylmercury and Hg(2+) on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells.
نویسندگان
چکیده
Expression cDNA clones of alpha1B-1 or alpha1E-3 subunits coding for human neuronal N-(Cav2.2) or R-subtype (Cav2.3) Ca2+ channels, respectively, was combined with alpha2-bdelta and beta3-a Ca2+ channel subunits, and transfected into human embryonic kidney cells for transient expression to determine whether specific types of neuronal voltage-sensitive Ca2+ channels are affected differentially by methylmercury (MeHg) and Hg2+. For both Ca2+ channel subtypes, MeHg (0.125-5.0 microM) or Hg2+ (0.1-5 microM) caused a time- and concentration-dependent reduction of current. MeHg caused an initial, rapid component and a subsequent more gradual component of inhibition. The rapid component of block was completed between 100 and 150 s after beginning treatment. At 0.125 to 1.25 microM, MeHg caused a more gradual decline in current. Apparent IC50 values were 1.3 and 1.1 microM for MeHg, and 2.2 and 0.7 microM for Hg2+ on N- and R-types, respectively. For N-type current, effects of Hg2+ were initially greater on the peak current than on the sustained current remaining at the end of a test pulse; subsequently, Hg2+ blocked both components of current. For R-type current, Hg2+ affected peak and sustained current approximately equally. Kinetics of inactivation also seemed to be affected by Hg2+ in cells expressing N-type but not R-type current. Washing with MeHg-free solution could not reverse effects of MeHg on either type of current. The effect of Hg2+ on N- but not R-type current was partially reversed by Hg2+-free wash solution. Therefore, different types of Ca2+ channels have differential susceptibility to neurotoxic mercurials even when expressed in the same cell type.
منابع مشابه
Effects of methylmercury on human neuronal L-type calcium channels transiently expressed in human embryonic kidney cells (HEK-293).
Methylmercury (MeHg) disrupts the function of native, high voltage-activated neuronal Ca(2+) channels in several types of cells. However, the effects of MeHg on isolated Ca(2+) channel phenotypes have not been examined. The aim of the present study was to examine the action of MeHg on recombinant, neuronal L-type voltage-sensitive Ca(2+) channels. Human embryonic kidney cells (HEK-293) were tra...
متن کاملInorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms.
Part of the neurotoxic effects of inorganic mercury (Hg(2+)) and methylmercury (MeHg) was attributed to their interaction with voltage-activated calcium channels. Effects of mercury on T-type calcium channels are controversial. Therefore, we investigated effects of Hg(2+) and MeHg on neuronal Ca(v)3.1 (T-type) calcium channel stably expressed in the human embryonic kidney (HEK) 293 cell line. H...
متن کاملComparative Effects of Methylmercury and Hg on Human Neuronal N- and R-Type High-Voltage Activated Calcium Channels Transiently Expressed in Human Embryonic Kidney 293 Cells
Expression cDNA clones of 1B-1 or 1E-3 subunits coding for human neuronal N(Cav2.2) or R-subtype (Cav2.3) Ca 2 channels, respectively, was combined with 2-b and 3-a Ca 2 channel subunits, and transfected into human embryonic kidney cells for transient expression to determine whether specific types of neuronal voltage-sensitive Ca channels are affected differentially by methylmercury (MeHg) and ...
متن کاملInhibition of high voltage-activated calcium channels by spider toxin PnTx3-6.
Animal peptide toxins have become powerful tools to study structure-function relationships and physiological roles of voltage-activated Ca(2+) channels. In the present study, we investigated the effects of PnTx3-6, a neurotoxin purified from the venom of the spider Phoneutria nigriventer on cloned mammalian Ca(2+) channels expressed in human embryonic kidney 293 cells and endogenous Ca(2+) chan...
متن کاملVoltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.
Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 306 3 شماره
صفحات -
تاریخ انتشار 2003